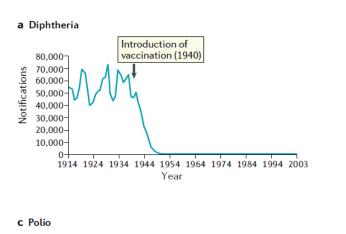
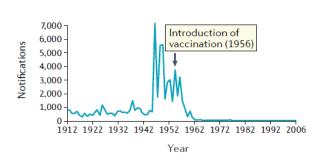
Vaccines: The Basics

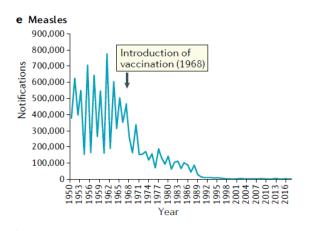
Robert J. Fallis, MD

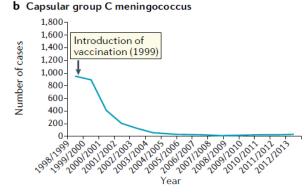
Vaccine Objectives

- What is a vaccine?
- Why are vaccines important?
- What are the different kinds of vaccines?
- What is herd or population immunity?
- Vaccine safety.



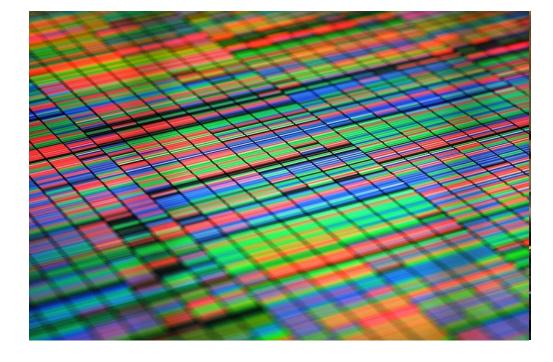

What is a Vaccine


- A vaccine is a biological product that can safely lead to an immune response that protects a person against subsequent infection or disease.
 - Vaccines exploit the ability of the immune system to respond to and then remember encounters with various viruses and bacteria
- Vaccinations have reduced disease, disability, and death from a variety of infectious diseases.
- Vaccinations are safe and common.
 - Example: annual flu shots



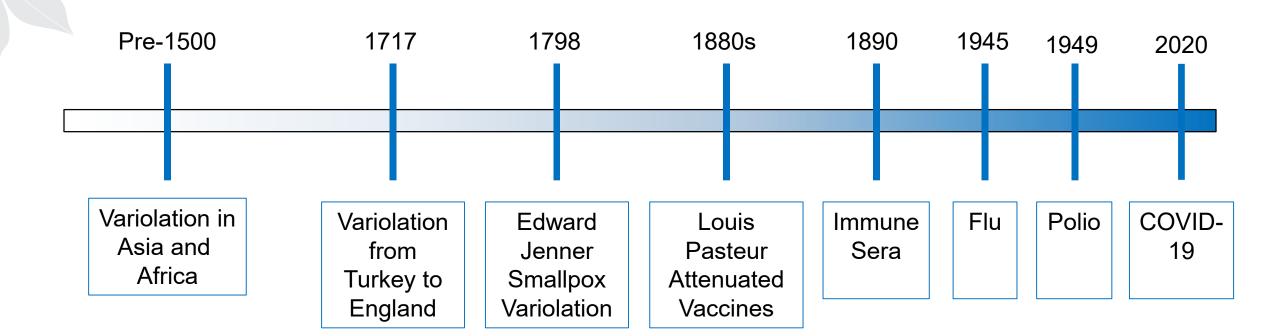
Impact of Vaccination on Disease

- 1980: Global eradication of smallpox
 - Previously 300 million deaths in the 20th century alone


History of Vaccination

1500 and prior: Variolation used in parts of Europe, Africa and Asia

Variolation: Smallpox pustule scratched into recipient's skin to protect against smallpox


2020: COVID-19 vaccine: genetic sequence to vaccine candidate in a few

days

Vaccination Timeline

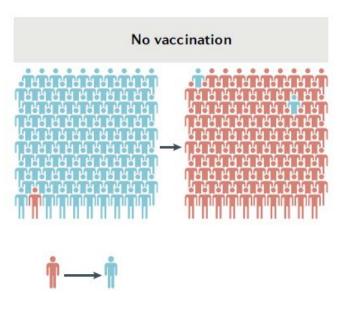
Types of Vaccines

- Live attenuated vaccines can replicate in the recipient
 - Limits their use in immunocompromised people
 - Old shingles (varicella zoster), measles/mumps/rubella (MMR)
- Non-live vaccines cannot replicate in the recipient
 - No disease risk to immunocompromised people
 - Non-live vaccines are usually combined with an adjuvant
 - Adjuvant is an agent which enhances the immune response to the vaccine
- Live vaccines are not generally given to immunocompromised recipients

Types of Vaccines

Live Vaccines	Example	Booster	Introduced
Live attenuated	MMR, yellow fever	yes	1798 smallpox
Non-Live Vaccines			
Killed	polio (Salk)	yes	1896 typhoid
Toxoid	tetanus	yes	1923 diphtheria
Recombinant subunit	hepatitis, zoster, flu	yes	1970 anthrax
Viral-like Particles	HPV	yes	1986 hepatitis B
Protein Polysaccharide Conjugate	pneumococcal	yes	1987 meningococcal
Outer Membrane	meningococcal	yes	1987 influenza
Viral vectored (single gene)	Ebola	no	2019 ebola
Nucleic Acid (mRNA)	COVID-19	yes	2020 COVID-19

Vaccination: An Immune Response is Required


Population Immunity

- Vaccines provide individual protection for those persons vaccinated
- Vaccines also provide population (herd) protection by reducing the spread of disease within a population

What is Population or Herd Immunity

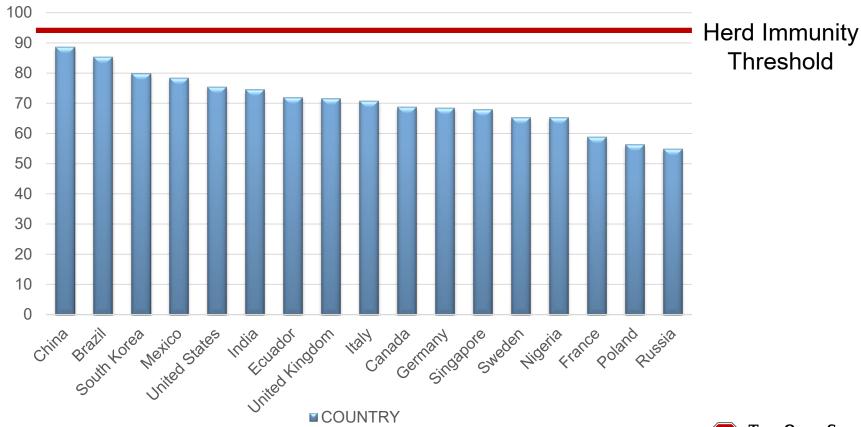
Infection passes from individuals with disease to susceptible individuals and spreads throughout the population

Vaccine Safety

- Existing data indicate that vaccines are very safe
- Common side effects of many vaccines
 - Injection site pain, redness and swelling
 - Systemic symptoms such as fever, malaise and headache.
- Serious side effects from vaccines are very rare
 - Anaphylaxis (a potentially severe allergic reaction) occurs less than one in a million doses.
- People often learn about real or perceived vaccine adverse events through social media platforms

Vaccination Challenges

- Vaccines only work if they are used
- A vaccine that remains in the vial is 0% effective.
- The greatest challenge protection against serious infectious disease remains vaccine access.
- Communication is crucial to building confidence
 - Explaining how vaccines work
 - Explaining how vaccines are developed based on safety and efficacy


Challenges: The Anti-Vaccination Movement

- Decreasing vaccine coverage has led to outbreaks of infectious diseases such as measles
- There may be philosophical or religious objections to vaccination
- Survey data suggest that a substantial proportion of adults may be unlikely to accept the COVID-19 vaccine.
- 2020 multi-country survey of potential COVID-19 vaccination acceptance:
 - 13,426 randomly selected individuals across 19 countries
 - 71.5% would be likely to take COVID-19 vaccine
 - 61.4% would get vaccinated if their employer recommended it.

Survey: Potential Acceptance of COVID-19 Vaccine

 For highly transmissible pathogens 92-94% of the population must be vaccinated to prevent disease.

Summary

- Vaccinations have been in use for hundreds of years
- Vaccines are very safe and have reduced disease, disability, and death from a variety of infectious diseases.
- There are several types of vaccines in use
 - Current COVID-19 vaccines are mRNA vaccines
- Vaccines only work if they are used

